# Electromagnetism

Have you ever wondered how magnets work? The explanation of this phenomenon eluded scientists for a very long time, and was not solved until the mid-19th century. Today, we learned about the relationship between electricity and magnetism and found that moving electric charges create a magnetic field, which is a space where the effects can be felt by other magnets. After discussing magnets, how magnetic fields are created, and how an electromagnet is made, students built their own electromagnets of varying strengths to pick up paperclips. Students worked in groups to make electromagnets using a battery, a resistor, a wire, and a nail. Students investigated how the number of wire coils around the nail affected the strength of their electromagnet. We learned that the more times you coil the wire around the nail, the stronger the magnet becomes – your student should be able to tell you why this is. (Hint: It has to do with the relationship between electricity and magnetism!)

Additional Information: Try this at home! If you have a sewing needle and a relatively strong magnet, try to align the crystal domains (mini-magnets) of the sewing needle by stroking it with the magnet repeatedly in one direction. Then see if the needle exhibits any magnetic behavior (repelling or attracting other magnetic objects.) http://www.scientificamerican.com/article/find-magnetic-north-with-compass-bring-science-home/

Electromagnetismo

¿Alguna vez te has preguntado cómo funcionan los imanes? Los científicos no fueron capaces de explicar este fenómeno por mucho tiempo, recién a mediados del siglo 19 pudieron contestar esta pregunta. En la clase de hoy aprendimos sobre la relación que existe entre la electricidad y el magnetismo y descubrimos que al mover cargas eléctricas podemos crear un campo magnético- que es un espacio donde los efectos se pueden sentir por otros imanes. Después de discutir sobre los imanes, cómo se crean los campos magnéticos y cómo se construyen los electroimanes, los estudiantes construyeron sus propios imanes con varios tipos de fuerza para recoger clips de papel. Los estudiantes trabajaron en grupos para construir electroimanes, usando una batería, una resistencia, un alambre y un clavo. Los estudiantes investigaron cómo el número de bobinas de alambre alrededor del clavo afectaba la fuerza de su electroimán. Aprendimos que entre más se enrolla el alambre alrededor del clavo, el imán se volvía más fuerte. Su hija o hijo debería ser capaz de explicar porqué ocurre ésto (una pista: tiene que ver con la relación entre la electricidad y el magnetismo).

Información adicional: Haga esto en casa: si tiene una aguja de coser y un imán relativamente fuerte, trate de alinear los dominios de cristal (imanes miniatura) de la aguja. Para esto, debe frotar la aguja en el imán, varias veces y en una dirección.  Luego observe si la aguja presenta algún comportamiento magnético (atracción o repulsión hacia otros objetos magnéticos) http://www.scientificamerican.com/article/find-magnetic-north-with-compass-bring-science-home/

Does your child enjoy our visits? Please consider supporting our program so we can reach more students!
Author

## Leighann

Leighann Sullivan earned her BS in Biology from Cornell University. For a number of years she taught math, science, and language skills at a secondary school for learning disabled students. She subsequently earned her PhD in Biochemistry and Cell Biology from Rice University. Her dissertation was entitled, â€œMolecular and Genomic Analyses in Clostridium acetobutylicum.â€ When not pursuing academic interests she enjoys spending time with her family, traveling, reading, and experimenting in the culinary arts.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

##### Latest Posts
Open 7 days INFO
Our Young Pre classroom is for ages. This age group is working
BELL SCHEDULE