Today, students explored how electric current produces a magnetic field. Students built and tested their own electromagnets, explored different core materials, and modified the magnetic fields they produced.

Students built their own electromagnets with the ultimate task of picking up paperclips. Students worked in pairs to make electromagnets using a battery, a wire, and a nail. They investigated how the number of wire coils around the nail affected the strength of their electromagnet. Students discovered that the more times you coil the wire around the nail, the stronger the magnet became – your student should be able to tell you why this is happens. Students were also encouraged to investigate other materials that may create an electromagnet (wrought iron nail, a pencil, and an aluminum nail). Additional batteries, to be added to the original electromagnet, were also available for students to explore.

Students also used a compass to compare the magnetic fields of a bar magnet and the electromagnet they created. Students learned that the field lines have the same shape – the magnetic fields are strongest in the same places and both have a north pole and a south pole. An electromagnet can be turned off and its polarity can be reversed (north and south can be “flipped”) while neither of these properties are true for a bar magnet (permanent magnet).

We recommend you try the following activity as an extension:  http://www.scientificamerican.com/article/find-magnetic-north-with-compass-bring-science-home/


¿Alguna vez te has preguntado cómo funcionan los imanes? Los científicos no fueron capaces de explicar este fenómeno por mucho tiempo, recién a mediados del siglo 19 pudieron contestar esta pregunta. En la clase de hoy aprendimos sobre la relación que existe entre la electricidad y el magnetismo y descubrimos que al mover cargas eléctricas podemos crear un campo magnético- que es un espacio donde los efectos se pueden sentir por otros imanes.

Después de discutir sobre los imanes, cómo se crean los campos magnéticos y cómo se construyen los electroimanes, los estudiantes construyeron sus propios imanes con varios tipos de fuerza para recoger clips de papel. Los estudiantes trabajaron en grupos para construir electroimanes, usando una batería, una resistencia, un alambre y un clavo. Los estudiantes investigaron cómo el número de bobinas de alambre alrededor del clavo afectaba la fuerza de su electroimán. Aprendimos que entre más se enrolla el alambre alrededor del clavo, el imán se volvía más fuerte. Su hija o hijo debería ser capaz de explicar porqué ocurre ésto (una pista: tiene que ver con la relación entre la electricidad y el magnetismo).

Información adicional: Haga esto en casa: si tiene una aguja de coser y un imán relativamente fuerte, trate de alinear los dominios de cristal (imanes miniatura) de la aguja. Para esto, debe frotar la aguja en el imán, varias veces y en una dirección.  Luego observe si la aguja presenta algún comportamiento magnético (atracción o repulsión hacia otros objetos magnéticos) http://www.scientificamerican.com/article/find-magnetic-north-with-compass-bring-science-home/

Does your child enjoy our visits? Please consider supporting our program so we can reach more students!




Leighann Sullivan earned her BS in Biology from Cornell University. For a number of years she taught math, science, and language skills at a secondary school for learning disabled students. She subsequently earned her PhD in Biochemistry and Cell Biology from Rice University. Her dissertation was entitled, “Molecular and Genomic Analyses in Clostridium acetobutylicum.” When not pursuing academic interests she enjoys spending time with her family, traveling, reading, and experimenting in the culinary arts.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Open 7 days INFO
Our Young Pre classroom is for ages. This age group is working