# Electromagnetism

(Electro)Magnetism

Have you ever wondered how magnets work? The explanation of this phenomenon eluded scientists for a very long time, and was not solved until the mid-19th century.  Today, we learned about the relationship between electricity and magnetism and found that moving electric charges create a magnetic field, or space where the effects can be felt by other magnets.

After discussing magnets, how magnetic fields are created and an electromagnet’s cores and coils, students built their own electromagnets of varying strengths to pick up paperclips. Students worked in groups to make electromagnets using a battery, a resistor, a wire, and a nail.  Students investigated how the number of wire coils around the nail affected the strength of their electromagnet.  We learned that the more times you coil the wire around the nail, the stronger the magnet became – your student should be able to tell you why this is. (Hint: It has to do with the relationship between electricity and magnetism!)

Try this at home!  If you have a sewing needle and a relatively strong magnet, try to align the crystal domains (mini-magnets) of the sewing needle by stroking it with the magnet repeatedly in one direction. Then see if the needle exhibits any magnetic behavior (repelling or attracting other magnetic materials objects.)  http://www.scientificamerican.com/article/find-magnetic-north-with-compass-bring-science-home/

(Electro)Magnetismo

¿Alguna vez te has preguntado cómo funcionan los imanes? Los científicos no fueron capaces de explicar este fenómeno por mucho tiempo, recién a mediados del siglo 19 pudieron contestar esta pregunta. En la clase de hoy aprendimos sobre la relación que existe entre la electricidad y el magnetismo y descubrimos que al mover cargas eléctricas podemos crear un campo magnético.

Después de discutir sobre los imanes, cómo se crean los campos magnéticos y sobre los núcleos y bobinas de los electroimanes, los estudiantes construyeron sus propios imanes con varios tipos de fuerza, y recogieron clips de papel. Los estudiantes trabajaron en grupos para construir electroimanes, usando una batería, una resistencia, un alambre y un clavo. Los estudiantes investigaron cómo el número de bobinas de alambre alrededor del clavo afectaba la fuerza de su electroimán. Aprendimos que entre más  se enrolla el alambre alrededor del clavo, el imán se volvía más fuerte. Su hija  o hijo debería ser capaz de explicar porqué ocurre ésto (una pista: tiene que ver con la relación entre la electricidad y el magnetismo).

Terminamos la clase discutiendo sobre los imanes permanentes y sobre el motor “homopolar” creado con un imán de tierras, un tornillo, una batería y un alambre.